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A HEAVY RIGID BODY ROLLING ALONG 

A STRAIGHT LINE ON A PLANEt 

Yu.  D.  G L U K H I K H  a n d  V. N. T K H A I  

Moscow 
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The problem of the stability of a heavy rigid body, bounded by the surface of an ellipsoid and with a cavity in the form of a 
coaxial ellipsoid, rolling along a straight line on a horizontal rough plane is investigated. It is shown that in the ease of a body 
that is dose to being dynamically symmetrical, parametric resonance always occurs leading to instabih'ty of the rolling. Each ellipsoid 
has its own "individual" resonance angular velocity. In the general case, regions in which the ncccssary stabifity conditions are 
satisfied can be distinguished in parameter space. The problem of calculating the resonance coefficient corresponding to instability 
for parametric resonance in a reversible third-order system is solved. © 2003 Elsevier Science Ltd. All rights reserved. 

1. P A R A M E T R I C  R E S O N A N C E  I N  A R E V E R S I B L E  
T H I R D - O R D E R  S Y S T E M  

C o n s i d e r  a q u a s i - a u t o n o m o u s  r ev e r s ib l e  t h i r d - o r d e r  s y s t e m  o f  d i f f e r e n t i a l  e q u a t i o n s ,  2 n - p e r i o d i c  w i th  
r e s p e c t  to  t, 

~i, = U °(u,u ) + eVs(~ u,v, t), s = 1, 2, v" = V °(u,v ) + t g ( ~  u,v, t) (1.1) 

(e is a small parameter),  invariant under the replacement (Ul, U2, I), t) --> (ul, u2, -1), -t). We will assume 
that the generating system obtained from (1.1) when e = 0 allows of a constant solution (u °, u °, 0), 
belonging to a fixed set M = {ul, u2, o: 1) = 0}. The equations in variations, set up for this solution, 
have the form 

.i s =bOy, s = l ,  2, j t=afx,  +a~x 2 (1.2) 

o o (as, bs are constants). If a°b ° + a~b ° ¢ -k 2, k e N or a°b ° + a°b ° = 0, but la°l + la21 # 0, system (1.1), 
for fairly small e # 0 allows of the 2n-periodic solution [1] 

u s.(e, t) = u s° + Eu](e, t), s = 1,2, u "(e.,t)=evl(g,t) (1.3) 

which is symmetrical with respect to the set M. We will assume that the function u](e, t) and DI(E , t) 
are analytical with respect to the parameter e. 

We will formulate the problem of the stability of the periodic solution (1.3) of  system (1.1) and fast 
consider a system of approximation, linear in e (everywhere henceforth summation overj  and s is carried 
out from 1 to 2) 

Jcs =e~,asj(t)x j +(b 0 +ebs(t))y, 
J 

= ~, (a ° + ~.aj(t))xj + ~a33(t)y 
J 

s = l ,  2 

(1.4) 

By virtue of thee reversibility of the initial system (1.1) and the symmetry of the solution (1.3), Eqs 
(1.4) will also be invariant [2] with respect to each of the following transformations: (a) (xl, x2, y, t) 
(Xl, X2, --y, "¢) a n d  (b )  (x1, x2, y ,  t)  --~ ( -x l ,  -x2, y ,  - t ) .  

This means that in system (1.4) the functions as/(t) are odd while bs(t) and a/(t) are even in t. Then, 
these functions can be represented by Fourier series in the form 
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asj = a~ ) sin t + a~j 2) sin 2t +... 

b s =b;  +b~ 1) cost +b] 2) cos2t ÷. . .  

aj = a; + aJ I, COSt + aJ 2, cos2t +... 

(1.5) 

The right-hand side of system (1.4) depends on ~. When E = 0 system (1.4) is autonomous and the 
roots of the characteristic equation are 

0 0 0 0 
2LL2 =-l'4albl +a2b2, ~'3 = 0  

When 0 0 0 0 albl + a2b2 < 0 we have pure imaginary root ~q,2 = ___ico, and the necessary condition for 
solution (1.3) to be stable is satisfied. This condition is sufficient for linear system (1.4) to be stable for 
small e ¢ 0, provided there is no parametric resonance 2o) = p ~ N [3]. 

Parametric resonance, as a rule, leads to instability [3]. derived from the fact that one coefficient in 
the normal form of linear system (1.4) does not vanish. The calculation of this coefficient is problem 
related to normalizing the system, periodic in t and dependent on the parameter ~. However it is sufficient 
to calculate this coefficient in the first approximation in ~ [3], which somewhat simplifies the problem. 
Below we obtain specific formulae which enable one to calculate this coefficient in the general case of 
third-order system (1.1). 

System (1.1) always has one characteristic exponent equal to zero [2]. Hence, by the Lyapunov- 
Floquet theory system (1.1) allows of a first integral of the form 

V(x I , x 2, y, ~, t) = ~, A) (~., t)xj + B(~, t)y = h (h = const) 
J 

(1.6) 

with coefficients that are periodic in t. In this, in view of the reversibility of the initial system (1.1), the 
functionsAj(e, t) will be even while the function B(e, t) will be odd. Moreover, obviously, these coefficients 
depend on the parameter e. We will put 

Aj(¢., t) = S ° + eSj(E, t), B(¢, t) = F.~(¢., t) (1.7) 

and we will calculate the total derivative of the function Vby virtue of system (1.1). We have 

dt -- x (a ° + a )xj (s ° xs + bj)y + 
J J 

From the condition for this derivative to be equal to zero we obtain equations which satisfy the 
unknown functions aj and 13. For this we equate the coefficients of like powers of e. For the coefficients 
of e0 and e 1 we obtain 

' ° = 0 ,  j = l ,  2, 0 0 sj Essb; =o 
S 

hi(O, t) + ~. a°(O, t)asj + a°f3(O, t) = O, 
5 

j = l ,  2 

(1.8) 

~(0, t) + Y~ (a°bs(t)+ as(O, t)b°s) = 0 (1.9) 
s 

o and gives a certain freedom in choosing them. The first of these equations serves to determine o~j 
We will put 

a j  (0, t) = Sjo + Sjl  cos t + a j2 cos 2t +.. .  

13(0, t) = 13 ! s in t + 132 sin 2t +. . .  
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((zj0, (zjl, 13j are constants) and substitute these expressions into system (1.9). As a result we have 

= a s (131 sin t + I~ 2 sin 2t +.. .)  + 0tsl sin t + 2oq2 sin 2t +. . .  0 

+ 5 .  _o_O)sint+5 . o (2) , + O~jajs sm2t .. s = l ,  2 tLj ujs ., 
J J 

- (~1 cos t  + 2~2 c o s 2 t  +...) = 5.  + E 0 + 5.  o b°Otjo . bjo~peost b~lXy2COS2t+ 
J ] J 

+ E  0 * ~O l . ( I )  ajbj  +5. cos t+  Z -0L(2)~^S'~'+ t . l . j u j  . .  • L.~juj ~.u =,~ . 

J 1 J 

Then, equating coefficients of like harmonics we obtain 

5 .  0 0 * _ (b) or/0 + a jb j  ) - 0 (1.10) 
i 

aOl~k o <k) .,.,,,o~,(k)~ k = I, 2, /aLk +5. s=l,  2, -k13 k 5. o = (x/ajs, = (b)ot#.v . j , , j  , . . . .  
/ y 

From the first two equations of (1.10) we determine (Xlk and cz2k and substitute them into the third 
equation. We then obtain a single linear equation for determining 13k 

(X a? bO + k2)~/= +k x txjvj-°L(t) + a o x  bOa(k)j '/ +~o~,,2,(., oja2j'° (4) = 0  

J J J J 

where c~ ° satisfy condition (1.8). 
If, for any natural k, we have 

a =- 5. a°b y + k 2 ~ 0 
/ 

(1.11) 

then all 13k and, of course, also %k, are determined uniquely. This condition is always satisfied when 
there is no parametric resonance. 

If there is parametric resonance 20) = p = 2 / -  1, l E N, we have 

5. 0 0  ajb) = --(2l - 1) 2 / 4  
J 

and A = 0 when (2l - 1) 2 --- 4k 2, which is impossible. Consequently, for odd p the transformation is 
also determined uniquely. 

In these cases we put 

= : ,  _ _ : ,  a ,o  - : ,  - b ° -  X o • o = ajb  i / b z  (1.12) 
J 

Then the coefficients co: and 13k are calculated from the formulae 

a :  = (a°fk + g k ) / L  13k = A,  (1.13) 

, . o . . o  ( ~  ~.o~<kj, , . , , . O , . ( k ) _ : b ~ k b ) ( T  " 0 0 Z - 1  f t  =-(5 .  "j (o2a U -~I "zj , +'~v2ul b~ ay + k ) 
J / 

gk  = kO~(k)  kO~(k)  
¢"2¢*11 - -  *"1 ¢*21 

We will now assume that parametrics resonance occurs 20) = p = 21, 1 ¢ N. Then, when k = l we 
have A = 0. In this case we obtain from (1.11) that the linear homogeneous from of (z ° is equal to zero. 
But (xy also satisfy (1.8). Hence we obtain (x~' = 0. 

Hence, when 0) = l ~ N we have in (1.7) 

o o =a°~klk, keN % =0, 5. =0, b) O~jo oL# 
/ 
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while the coefficients 13k are arbitrary. In this case integral (1.6) does not enable us to eliminate one of 
the equations (in xl orx2) from the system. 

We can also use formulae (1.13) in the special case of parametric resonance co = l, when the first l 
harmonics are not present in system (1.4). In this case Eqs (1.11) give: 131 = ... = {3k-1 = 0, 13k is an 
arbitrary quantity and [~k+l, ~k+2 . . . .  are uniquely defined. In this case also formulae (1.12) remain true. 

Thus, the coefficients a/k and ~k in the integral are calculated from formulae (1.12) and (1.13) in the 
following cases: 

(a) there is no parametric resonance; 
(b) there is parametric resonance 2o) = p = 2l - 1, l ~ N; 
(c) there is parametric resonance co = l ~ N but system (1.4) does not contain the first l harmonics. 
In this cases we reduce the order of system (1.4) using integral V. To do this we express from (1.6) 

x~ = ai(v - (a ° + ea2)x~ - ~y), al = (a ° + ea~ )-~ 

and substitute the expression obtained into system (1.4). We obtain 

X2 = ( - - ~ l (  (~0 +eO~2)AI + ~22)X2 +(-C2d21[~AI +b° +F'b2)Y+q(t)V 

~=(-(a ° + ~a,)(ot ° + ~a2)A l + a  ° + ea2)x 2 + ( - g ~ a  ° + ~al)A , +~a33)y+r(t)V 

(the coefficients q(t) and r(t) are 2n-periodic functions). 
In the integral manifold V = 0, we have the second-order system 

-~2 = rllx2 + ~Y, J: = ~2x2 + rl2Y 

rlj = e(rljl sint +rlj2 sin2t + . . . )+e2(  )+ . . .  

~j = ~o + i~(~jo + ~jl cos t + ~j2 cos 2t +. . . )  + I~ 2 ( ) + .... j=l ,  2 

(1.14) 

We will express the coefficients fly, ~. in terms of the coefficients of system (1.4), specified by formulae 
(1.5). We obtain 

o u °  • (2) o TIt =~a22 -a2l ~I = ~(a2(~ ) -a~' ~-~i )s,nt +(a22-a(22) ~io Isin2t +... 1 
0 a o 

112 =~a3,-a°-~(tl'~l=~(a~)-~ j, ~-10 )sin t + (a~l) - ' 2  ~ ' l / s in  2, + . . . )  

~l =b~ +¢.b 2 =b ° +F.(b~ +b(2 D cost +b~2) cos2t +...) 

~ 2 = a ° - a ° -~ol + l~( a2 - al ~ol - a ° °t2a° - al°~° ) oto ) 2 

o or° ( • or° a o or20 a ° - a l o c t ~  
=a°-at  "~l +E( a2-a; 0 ~ -  (0~0) 2 + 

+ a (1' 0C21(~10 -- 0~110~0 
- ,  ~,-°-" (ao) 2 cost+. . .  

(1.15) 

Consider the system obtained from system (1.14) averaged over the period of the coefficients 

:~2 =(~o +~lo)Y, )' =(~o +¢.~2o)x 2 (1.16) 

We will denote by 

co~ = _(~o + ~ ,o ) (~o  + ~ o )  
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the frequency of the oscillations of the averaged system (1.16), which when E = 0 is identical with the 
frequency o of the oscillations of system (1.2) 

0. =O+&q +0(&q, co, =- &T () o G& +5&P) 
1 2 

By means of the transformation 

we can reduce system (1.16) to the form 

(1.17) 

(1.18) 

Then the corresponding system (1.14) takes the form 

i; = - (W+Ec0i)y*+E(7)i1sint+...)x;+&r(&icosr+...)y* 

jl’ = (0 + EW,)X; + ET-‘(~~, cost + . . .)x; + E(q2, sin t + . . .)y’ (1.19) 

t=]&SP ]” 

We now use the complex-conjugate variables z = 
We consider the case of second-order resonance 

x*Z + iy*, 5 = X; - iy* for system (1.19). 

2w=p, pcz 

In this case the equation for z can be written in the form 

i = i(w + HO, )t + g i&(t[ E - G_ ]e@ - Z[ F_ + G_ ]e-@’ + 

+t’cF+ + G+ ]e+” + z’[-F+ + G+ ]t?) (1.20) 

Fk = -3, f TlZp* G* = ‘-142p f 41, 

According to results obtained previously in [3], if the expansion of the coefficients in system (1.4) 
begins with thepth harmonic, solution (1.3) of system (1.1) will be unstable in the first approximation 
[3] if the following inequality is satisfied 

x2 X0;, x=F++G+ (1.21) 

where x is the coefficient of Z@’ in Eq. (1.20). 
We have thereby obtained an explicit expression for the resonance coefficient x for parametric 

resonance, 

2. THE PROBLEM OF A HEAVY RIGID BODY ROLLING ALONG 
A STRAIGHT LINE ON A PLANE 

The rolling of a heavy rigid body along an absolutely rough plane described by the system [4] 

@&+,x(&Q= -mpX(cjxp+ox/,+ox(OXp)-gy) 

(2.1) 
j+oxy=o 

where m is the mass of the body, w = (wi, 02, os)r is the vector of the instantaneous angular velocity, 
y = (yi, ~2, ys)r is the unit vector at the point of contact between the body and the plane, directed vertically 
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upwards, g is the acceleration due to gravity, @ = diag {A, B, C} is the central tensor of inertia of the 
body, and p = (x, y, z) is the radius vector drawn from the centre of mass to the contact point. The 
relation between the vectors p and 3" is established using the equation of ihe surface of the body; if this 
equation is written in the form F(p) = 0, we have 

3" = -grad F(p) ] Igrad F(p) I (2.2) 

We will write the equations of motion (2.1) in terms of the projections 0)a, 0)2, and 0)3 of the vector 
of the instantaneous angular velocity to onto the axes of the coupled system of coordinates and the 
projections of the unit vector 3' 

Ato i + ~2t~3 (C - B) = rag(y-~ 3 - z-/2) - ra(~iY 2 - ~2xY - (03xz + Ol z2 ) - 

-m(O.)lyy - 0)2.~'y -- ~3.rZ + ¢Ot)l ZZ ) - m(t01t.03xY - 0)2zy + 0)2t.03y 2 - (2.3) 

-t.03to2z 2 + to]yz - tolto2xz) 

~'~ + 0)~-/s - t°s-/2 = 0 

(123, x y z ,  A B  C) 

The relation between the vector 3, and the vector p(x,y, z), drawn at the point of contact of the body 
and the plane, in the case of body bounded by the surface of an ellipsoid, is given by Eq. (2.2) 

X (12 . y2 Z 2]-Y2 
y , = - ~ - [ 7 + 7 + ~ - ~ - )  (123, x y z ,  a b c )  (2.4) 

Hence, the problem of the motion of a heavy rigid body along an absolutely rough fixed horizontal 
plane is described by a closed system of sixth-order scalar differential equations in x, y, z, 0)1, 0)2, and 
0)3. System (2.3) allows of first integrals - the integral of energy and the geometric integral 

ra[co~(z 2 + y2)+OJ~(x2 + Z2)+0)~(y a + x 2 ) -  

-2(0)~o)2yx + o~2~szy + o~so)~xz)] + A ~  + B ~  + Co~] - 

-2rag(xyI + YY2 + Z't's) = 2h (h = const) 

v; + v,' + v} = l 

(2.5) 

Noted that the presence of these integrals enables us, in principle, to describe the problem by a system 
of fourth-order differential equations, which depend on h. However, this reduction presents a certain 
problem because the first of the integrals contains both the projections 3'1, 3'2 and 3'3 and the coordinates 
of the contact point x, y, z: the relation between these quantities is given by the fairly lengthy formulae 
(2.4). 

System of equations (2.3) possesses the integral manifold [5] in which 

t01 = ~ 2  =0 ,  "13 = 0  (2.6) 

while the change of variables 3'b 3'2 and 0)3 is defined by the system 

[C + m(x  2 + y2)]cb s = re(g(-~2 x + - / lY ) -  °~s (x-r + YY)) 

' ~ 1 -  0)3-/2 ---- 0,  "~2 + C03-/i ---- 0 

(2.7) 

In system (2.3) we will put the variables 021, 0) 2 and Y3 equal to zero. Then the first, second and fourth 
equations of the system become identities, and the system of third-order equations (2.7), defining the 
change in the variables 3'1, 3'2 and 0)3, remains. 

This manifold corresponds to a particular motion in which the point of contact between the body 
and the plane describes one of the principal sections, namely, the section situated in the xGy plane. 

System of equations (2.3) is invariant under the transformation 
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(t, (01 , to 2, to 3, 7~, Y2, Y3) ~ (-t ,  - 0  h, -¢02, -o)3, y~, Y2, "13) 

We substitute the variables --o)a, --0)2, --o)3, Y1, Y2, Y3 into system of equations (2.3) instead of the variables 
¢oa, o)2, 0)3, ~q, Y2, and Y3, and replace t by -t. Then the equations retain their form. Moreover, system 
(2.3), (2.4) is invariant under each of the transformations of the form (t, 0)1, 0)2, 0)3, ~1, Y2, ~'3) ---> 
(--4, --..O1, 0)2, 0)3,--~/1, '~2, '~3) taking into account the cyclic replacement of variables. This means that system 
(2.3) is a linearly reversible system [6] with four fixed sets. The property of reversibility enables us to 
use the methods developed in recent years for investigating reversible systems (see, for example, [7] to 
investigate system (2.6). 

We rotate the system of coordinates xyz in the xGy plane around the z axis by an angle ~0 and we will 
represent the deflection of the z axis from the vertical by the angle 0. This is achieved by a transformation 
which relates the "old" and "new" variables by the formulae [5] 

Yt =sinOcosg,  Y2 =sinOsin(p, 73 = c o s O ( 0 < O < l t )  

(2.8) 

o)l = p c o s q ) - q s i n g ,  o)2 = psin(p+qcos(p, o)3=r 

Obviously (p is the angle between the Gx axis and the G~ axis - the line of intersection of the xGy 
plane and the plane passing through the Gz axis and the vertical, and 0 is the angle between the Gz 
axis and the vertical. 

Replacement (2.8) enables us to take the geometric integral into account automatically. As a result 
the problem is described by five independent variables p, q, r q) and 0. Further, we eliminate r using 
integral and obtain a system of fourth-order differential equations 

dp = S_I{[x I + Y1 ]cos(p + [X2 + Y2]sin (P} + q~0 
dt 

dq = S_l{[_Xl + y1]sin 9 +[X 2 + Y2]cos(p } _ p~0 
dt 

dO 
~ m q  

dt 

dip = - r +  pctg0 
dt 

(2.9) 

where 

*z 

X = ( B - C ) t o 2 t o  3 + m{g(•3y- y2z)- tol (x.k + yy+ zz)+ 

+x(tolx + to2y + to3z)-to3y(to, x + to2y)+ 

+. ,x )  + yz(o,  - 

Y= ( C -  A)to3a) , + m { g ( r , z -  r3x)-tOe(XX + yy + zz)+ 

+ }( tO, x + tO2y + to,Z) - tO, Z( O)eY + tO3Z ) + 

+ O~3x(tOix + tO2y) + ZX(tO~ _ .2)}  

(the expressions of 0) 1, 0)2, ~/1, Y2, and Y3 in terms ofp, q, 0 and (p are given by formulae (2.8), and 0)3 is 
eliminated by the energy integral). 
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3. A BODY R O L L I N G  ALONG A S T R A I G H T  LINE 

In system of equations (2.9) the manifold (2.6) is defined by the condition 

O = zr l 2, p = q = O, r = O93 = - t  ~ (3.1) 

where the dependence of q~ on t is given by the first of Eqs (2.7) 

(C +m(x  .2 + y*2))ip+m(g(T2x*- )';y*)-r(x*J¢* + y*y*))=O (3.2) 

Here and below the asterisk denotes that the value of the function is calculated on the motion (3.1) 
investigated. 

For a specified body surface the coordinates of the point of contact between the body and the plane 
will be functions of the angle ~. 

Below we will consider a hollow ellipsoid, i.e. a body bounded by the surface of an ellipsoid with 
semi-axes a, b and c and a cavity in the form of a coaxial homothetic ellipsoid with semi-axes a(1-d), 
b(1-d) and c(1--d), where d is dimensionless parameter. The moments of inertia of the ellipsoid are 

A = ~ a ( b 2 + c 2 ) 1 5 ,  Z = ( l - ( 1 - d ) S X l - ( 1 - d ) 3 )  -' 

(ABC, abc) 

We obtain the coordinates of the point of contact x*, y* and the velocities.~*, )~* 

x* = -costp~-10p), y*=-otsincp~-l(q>) 

.~* = a sin tp~otb -3 0P), Y* = --~ cos tptptb -3 (tp) 

( I ) (9)  = (cos 2 ~P + a sin 2 ~l/2 ~) , ot = b2 / a 2 

After substituting the expressions obtained into (3.2) we obtain a conservative system with one degree 
of freedom. A complete investigation of this system was carried out in [8] using the phase-plane method. 

We can distinguish several forms of motion depending on the value of the constant energy h. To classify 
these it is convenient to use the integral in dimensionless form. 

We will introduce the following characteristic quantities: l is the major axis of the ellipsoid and 
x = ~ t  is dimensionless time. We then obtain 

L~a'P12(C*+(cos2q~+a2sin2,~),t,-~(~))+,t,(,p)=h'; h*= h C*= C (3.3) 
2 L dx J mgl" ml 2 

We can distinguish the following cases [8] depending on the value of the dimensionless constant h* 
(or h): 

(1) h* < q-~ (or h < rngb) - motion is impossible; 
(2) q-~ < h* < 1 (or mgb < h < mga) - the ellipsoid undergoes "rolling" in which the track of the 

point or contact on the reference plane is a segment. In these motions the value of angle q~ lies in the 
range (0, T). The angular velocity dtp/dt is a periodic function of time, which becomes zero twice per 
period of the rolling. 

(3) h* > 1 - the ellipsoid rolls along the straight line in one direction with angular velocity dcp/dt 
which is periodic in time. 

Below we will investigate the problem of the stability of the rollings of the ellipsoid in one direction 
(case 3), Since in this case the angular velocity of the rolling of the ellipsoid retains its sign, to describe 
these rollings, and motions close to it, we can change to a new independent variable - the angle ~. To 
do this we divide the equations of system (2.9) by dtp/dt and we obtain a 2n-periodic third-order system 

dtp S~ +q  

- P  (3.4) 
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dO 1 
d~0 s~ 

The angular velocity (0 on the manifold (3.1) is found from the energy integral (3.3) 

(m(:+:)+c) 
and in the general case - from the energy integral (2.5). 

Without loss of generality we will consider the case for which ~ > O, and the problem of the stability 
of the rolling is correctly reduced to investigating the stability of the particular solution 

p=q=0, 0=~12 (3.6) 

of system (3.4). 

4. THE EQUATIONS OF PERTURBED MOTION 

We will write the system of equations in variations for system of equations (3.4) in the neighbourhood 
of the solution (3.6) investigated 

d~Sp _ [cos(p a s i n g . ] .  [-cos~0 . sintp . 1][iq + 
- L s-g-" ÷ s - g ~ ' ÷ [  s-g ~3 ÷ s - g  ~' + 

+ ~ [cos (pc I + sin (pc 2 ]50 

dsq [ sintp cos(p. ~p [" sinq) +~d415q+ (4.1) 
~ =L-s-gal + s,--~a~-I +/-==-.a3 L ~q) ~cp j 

+ ~ [ - q  sin q) + c 2 cos q)]50 

__a~=_$r,q 
dq~ 

where 

s" = AB+ re(A: + By "2) 

d I = B]a I + mx*Y*a2, d 2 = mx*y*a ! + Ala 2 

d 3 = Bla 3 + rex*y'a4, d 4 = mx*y*a 3 + Ala 4 

B]=B+mx .2, A l = A + m y  .2 

a I = tO3((B- C)sin q) - my*X+) + my'X 

a~ :,,,3((C-A)co,~+~'X+)-~'X_ 

~ = o~ ( ( a - C)cos ~ + my'X_) 

a 4 = ( o 3 ( - ( C -  A)sin(p- mx*X ) 

X+ = x* cos q) + y* sin q), X = ,~* sin q) - ~,* cosqp 

(4.2) 
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¢1 - -  

~3c2x * 

A2 
(B+m(x*2+y*2))+Blb 1 + mx*y*b 2 

~3c2yl +m(x*2+y*2))+mx*y*bl +Alb 2 
C 2 = A2 ~A 

2 

bl = cc-('~*o03 - o03y2 * - g s i n t p )  - * g y  
A2 

b= = : (:o0  + o0 : +gcos+)+ gx" 
A2 

A 2 = (a 2 cos 2 ~0 + b 2 sin 2 q~)l,2 

Note that in the system obtained the relation o) 3 = r = - (a is specified by expression (3.5) while ~3 
= --/~. In addition J* cos (p + )~* sin (p = 0. 

As a result we obtain a linear reversible system with periodic coefficients, invariant under the 
transformation ((p, 8p, 8q, 80) ---> (--(p, 8p, --&/, 80). 

We will reduce system (4.1) to dimensionless form. To do this, using the quality l and the dimensionless 
time "c introduced earlier, we introduce the following dimensionless variables 

, ,, d o  3 l d o  3 
P~= P, ql = , rl =003 = 3; (°3 =d t  g dt 

As a result, in the new variables we obtain a dimensionless system of equations in variations. 

5. T H E  R O L L I N G  OF AN E L L I P S O I D  CLOSE TO AN E L L I P S O I D  
OF R E V O L U T I O N  

We will investigate the rolling of an ellipsoid which is close to an ellipsoid of revolution. In this case 
we use b = a~-i + e (e is small parameter). 

When e = 0 we have an ellipsoid of revolution, which rolls with constant angular velocity d~/dx, defined 
by relation (3.5) 

dx-~/ 2~.+5 =const 

The system of equations in variations (4.1) in the case of an ellipsoid of revolution has the form 

d 2 

--11 'p ng 

±80:- 8q 
g 

(5.1) 

{=2~+5, rl=~,(~+I)+5 , g=~10(h*-l), ~=c2/a 2 

We will calculate the roots of the characteristic equation of this system 
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Hence it can be seen that if the following condition of satisfied 

1~2 > 5 -4h*  (5.2) 

the roots ~, = +_ io) of the characteristic equation will be pure imaginary. 
Note that condition (5.2) is the necessary and sufficient condition for the Lyapunov stability [9] of 

the rolling of the ellipsoid of revolution. 
We will now consider the rolling of an ellipsoid, close to an ellipsoid of revolution (e * 0). In this 

case the coefficients of system (4.1), defined by formulae (4.2), will depend on e. 
We will denote the variations ~5, &/and 60 byx~,y and x2. System (4.1) then takes the form (1.4) with 

the coefficients 

g~ 
a l  i (q~) = - -  s in  2~p 

2(13 + 1)~ 

30~(1 - [~) - 25(~ + 1) + 8X 2 + 20h * r I sin 2~p 

a~2 (~P) : ~ _ I (2X + 5) 3/2 (k + 5 + [~(q - 5 / 2)) 

a21(cP)=O, a22(~P)=0, a33(cp) = f~-(L+5)sin2~p 
(13 + l)rl 

2 

T 

b2 (Ip) = t- 

aO = _ ~ ,  aO : 5 (~-  l) 'f~ 
qg 

a,(~p)= ~ '~  +~) (~2~+ 15/2~,1~+ 5~,+ 25) cos2cp 
~2 ~ 112 

/ a2(q0-  4r12g~132 + ( 4 ~ + 1 5 ) ~ - ~ - 5 +  + 

) 

(5.3) 

(5.4) 

According to well-known results [3], the characteristic exponents of the system are identical with the 
characteristic exponents _+ i0~. of the average system apart from terms of the order of e 2 and will be 
pure imaginary when condition (5.2) is satisfied and when there are no second-order resonances 
(2o~ = p,p E Z). 

It follows from formulae (5.3) that system (1.4) only contains an even harmonic. Consequently, only 
the resonance co = 1 (p = 2) is possible. 

In explicit form, the resonance relation is 
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0 
1.5 2.0 

° 

Fig. 1 

2.5 h 

Obviously this relation is satisfied for any h* and 13 = 1 (the case of a sphere). Consequently, for an 
ellipsoid, close to a sphere, rolling always occurs when there is parametric resonance. In Fig. 1 the 
horizontal straight line corresponds to a sphere. 

In the case when 13 ~ 1 relation (5.4) gives one other 13 = 13(h*) curve, corresponding to resonance. 
Hence it follows that each ellipsoid, close to an ellipsoid of revolution, has its own "individual" resonance 
angular velocity (the quantity h*). 

In Fig. 1 the curves of 13 = 13(h*) are given for d = 0.01 (a thin-walled ellipsoid) and d = 1.0 (a uniform 
ellipsoid). The masses of the ellipsoids are the same. 

Further investigations were made numerically. We checked the instability condition ×2 > co 2 on 
resonance curves (5.4). 

Theorem 1. Parametric resonance leads to instability of the rolling of an ellipsoid close to an ellipsoid 
of revolution. 

Hence it follows, in particular, that the rolling of a dynamically symmetrical ellipsoid, close to a sphere, 
in the case when the axis of symmetry does not coincide with the horizontal axis, is unstable. 

6. R E S U L T S  AND C O N C L U S I O N S  ON S T A B I L I T Y  

We will now calculate the characteristic exponents in the case of an arbitrary ellipsoid. 
The dimensionless system of equations in variations with coefficients that are 2~t=periodic in to is 

invariant under each of the following replacements: a) (tO, 8pl, 8ql, 80) ---> (--tO, 8pl, &h, --60) b) (tO, 8pl, 
&/i, 80) ---> (--~, 8pl, &h, 80), i.e. it is a linear reversible system. The characteristic exponents for this 
system can be found by the well-known method described in [2]. 

We will construct a solution of the Cauchy problem of a system of equations in variations in the section 
[0, 2It] with the following initial data 

~ ( 0 )  = 0, 8 0 ( 0 )  = 0, aq~(0) = 1 

Then, if 18ql(21t) [ < 1, then characteristic exponents of the system of equations in variations will be 
pure imaginary [2]. 

The results of  numerical investigations are shown in Fig. 2 and are compared for a hollow ellipsoid 
and a uniform ellipsoid. Rotation occurs the c axis. 

We have plotted the value of the parameter (z = b2/a 2 along the abscissa axis and the parameter  
13 = c2/a 2 along the ordinate axis. It is assumed that a > b (0 ~< cz ~< 1). The regions where the necessary 
stability conditions are satisfied are shown hatched, sloping to the left for a uniform ellipsoid (d = 1.0) 
and sloping to the right for a hollow ellipsoid (d = 0.01). In each part of the figure we compare the 
results for the same fixed value of the angular velocity (the parameter h*). 
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13 
h*=l.1 h*=l.3 h*=l.7 

0 
0.6 0.8 a 1.00.6 0.8 a 1.0 0 0.2 0.4 0.6 
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0 
h* = 10.0 h* = 10.0 

2 

1 
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Fig. 2 

The evolution of the stability regions as a function of the change in the angular velocity of the rolling 
can be tracked quite well in all parts of Fig. 2. 

We can draw the following conclusions from an analysis of the results. 

Theorem 2. Rolling of an arbitrary ellipsoid around the mean axis (a  < 1, 13 < 1, [3 > a)  is always 
unstable; rolling of the ellipsoid around the smallest axis (a  < 1, 13 < 1, 13 < a)  becomes stable as the 
angular velocity increases; the region where the necessary stability conditions for the rolling of the 
ellipsoid around the greatest axis are satisfied is greater the angular velocity. In this case the rolling of  
a hollow ellipsoid around the greatest axis is more stable than the rolling of a uniform ellipsoid around 
the greatest axis. 

The rolling of an ellipsoid of revolution (a = 1) around the greatest axis ([3 > 1) is stables; the rolling 
around the smallest axis (13 < 1) is stable if the angular velocity is sufficiently great. These results agree 
completely with the conclusions reached previously in [9]. 

It can also be clearly seen from the above results that instability regions adjoin points of parametric 
resonance (a = 1, 13 = 1 or a = 1, 13 = 13(h*)) to a first approximation. Nevertheless, the conclusions 
regarding the stability for parametric resonance agree with the results obtained in the previous section. 
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